Extensions 1→N→G→Q→1 with N=C22 and Q=C3×S4

Direct product G=N×Q with N=C22 and Q=C3×S4
dρLabelID
C2×C6×S436C2xC6xS4288,1033

Semidirect products G=N:Q with N=C22 and Q=C3×S4
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×S4) = C3×C22⋊S4φ: C3×S4/C2×C6S3 ⊆ Aut C22246C2^2:(C3xS4)288,1035
C222(C3×S4) = A4×S4φ: C3×S4/S4C3 ⊆ Aut C22169+C2^2:2(C3xS4)288,1024
C223(C3×S4) = C3×A4⋊D4φ: C3×S4/C3×A4C2 ⊆ Aut C22366C2^2:3(C3xS4)288,906

Non-split extensions G=N.Q with N=C22 and Q=C3×S4
extensionφ:Q→Aut NdρLabelID
C22.(C3×S4) = C3×C42⋊S3φ: C3×S4/C2×C6S3 ⊆ Aut C22363C2^2.(C3xS4)288,397
C22.2(C3×S4) = C3×Q8.D6φ: C3×S4/C3×A4C2 ⊆ Aut C22484C2^2.2(C3xS4)288,901
C22.3(C3×S4) = C3×Q8⋊Dic3central extension (φ=1)96C2^2.3(C3xS4)288,399
C22.4(C3×S4) = C6×CSU2(𝔽3)central extension (φ=1)96C2^2.4(C3xS4)288,899
C22.5(C3×S4) = C6×GL2(𝔽3)central extension (φ=1)48C2^2.5(C3xS4)288,900
C22.6(C3×S4) = C6×A4⋊C4central extension (φ=1)72C2^2.6(C3xS4)288,905

׿
×
𝔽